Unconditional local well-posedness for periodic NLS
نویسندگان
چکیده
Nonlinear Schrödinger equations with nonlinearities | u 2 k on the d -dimensional torus are considered for arbitrary positive integers and . The solution of Cauchy problem is shown to be unique in class C t H x s a certain range scale-subcritical regularities , which almost optimal case ≥ 4 or proof based various multilinear estimates infinite normal form reduction argument.
منابع مشابه
Global Well-posedness of Nls-kdv Systems for Periodic Functions
We prove that the Cauchy problem of the Schrödinger-KortewegdeVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1×H1. More precisely, we show that the nonresonant NLS-KdV system is globally well-posed for initial data in Hs(T) × Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally wellposed with s > 8/9. The strategy is to app...
متن کاملInvariant Weighted Wiener Measures and Almost Sure Global Well-posedness for the Periodic Derivative Nls
In this paper we construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier-Lebesgue space FL(T) with s ≥ 1 2 , 2 < r < 4, (s − 1)r < −1 and scaling like H 1 2 (T), for small ǫ > 0. We also show the invari...
متن کاملGlobal Well-posedness for Cubic Nls with Nonlinear Damping
u(0) = u0(x), with given parameters λ ∈ R and σ > 0, the latter describing the strength of the dissipation within our model. We shall consider the physically relevant situation of d 6 3 spatial dimensions and assume that the dissipative nonlinearity is at least of the same order as the cubic one, i.e. p > 3. However, in dimension d = 3, we shall restrict ourselves to 3 6 p 6 5. In other words, ...
متن کاملLocal Well-posedness for the Periodic Korteweg-de Vries Equation in Analytic Gevrey Classes
Motivated by the work of Grujić and Kalisch, [Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations 15 (2002) 1325–1334], we prove the local well-posedness for the periodic KdV equation in spaces of periodic functions analytic on a strip around the real axis without shrinking the width of...
متن کاملGlobal Well-posedness for Periodic Generalized Korteweg-de Vries Equation
In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2020.10.025